First semestral examination 2008 Commutative algebra M.Math.IInd year Instructor — B.Sury

Answer 6 questions completely. Be brief!

Q 1.

- (i) Let $\theta: M \to N$ be an A-module homomorphism. If N is finitely generated and $\theta_P: M_P \to N_P$ is onto, for a fixed prime ideal P, show that there exists $a \notin P$ such that the induced map: $M_a \to N_a$ is onto.
- (ii) Give an example to show that even if M, N are finitely generated, then $S^{-1}Hom_A(M, N) \to Hom_{S^{-1}A}(S^{-1}M, S^{-1}N)$ may not be onto.

Q 2.

If M is a finitely generated module over a Noetherian ring A, show $\sqrt{ann(M)} = \bigcap_{P \in Ass(M)} P$.

Q 3.

Consider the ring $A = \mathbb{Z}[2X, X^2, X^3]$. Prove that the ideal P generated by 2X and X^2 over A is prime but that P^2 is not P-primary.

Q 4.

- (i) Compute $Tor_n^{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z},\mathbb{Z}/p\mathbb{Z})$ for a prime p for n=0 and n=1.
- (ii) Over the ring A of continuous functions from $\mathbf R$ to itself with period π , show that the module P of all continuous functions f satisfying $f(x+\pi)=-f(x)\forall x$, is projective but not free.

Q 5.

Let A be a subring of a field K and let $\theta: A \to \Omega$ be a nontrivial ring homomorphism to an algebraically closed field. If $t \in K^*$, show that θ extends to a ring homomorphism either from A[t] or from $A[t^{-1}]$ to Ω .

Q 6.

Let G be a finite group of automorphisms of a ring A.

- (i) Prove that A is an integral extension of $A^G := \{a \in A : g(a) = a\}$.
- (ii) Show that G acts transitively on the set of prime ideals of A lying over any prime of A^G .

Q 7.

Let A be a Noetherian, local, normal domain in which each non-zero prime ideal is maximal. Show that the maximal ideal of A must be principal.

Q 8.

Show that an Artinian ring has only finitely many maximal ideals.

Q 9.

Let I be a fractional ideal of a domain A. If I is projective as an A-module, prove that I is invertible.

Q 10.

Let (A, \mathbf{m}) be a Noetherian, local ring. Using the dimension theorem or otherwise, prove that dim $A \leq \dim_{A/\mathbf{m}} \mathbf{m}/\mathbf{m}^2$.